Boson realization of non-generic $\mathrm{sl}_{\mathrm{q}}(2)-\mathrm{R}$ matrices for the Yang-Baxter equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L545
(http://iopscience.iop.org/0305-4470/24/10/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:24

Please note that terms and conditions apply.

## LETTER TO THE EDITOR

# Boson realization of non-generic $\operatorname{sl}_{q}(\mathbf{2})-\boldsymbol{R}$ matrices for the Yang-Baxter equation 

Chang-Pu Sun $\ddagger \ddagger \S$, Kang Xue $\ddagger \S$, Xu-Feng Liu§ and Mo-Lin Ge§<br>$\dagger$ CCAST (World Laboratory), PO Box 8730, Beijing, People's Republic of China<br>$\ddagger$ Physics Department, Northeast Normal University, Changchun 130024, People's Republic of China<br>§ Theoretical Physics Division, Nankai Institute of Mathematics, Tianjin 300071, People's Republic of China||

Received 5 December 1990


#### Abstract

By establishing a new Boson realization of quantum universal enveloping algebra $\mathrm{sl}_{q}(2)$ and its representations in the non-generic case that $q$ is a root of unity, we systematically construct non-generic $R$-matrices of $\mathrm{sl}_{q}(2)$ through the universal $R$-matrix. These new $R$-matrices are not covered by the standard $R$-matrices constructed in terms of quantum group and the non-standard ones obtained by using the extended Kauffman's diagram technique.


The Yang-Baxter equation plays a crucial role in nonlinear integrable systems in physics [1-3], and its solutions can be constructed in terms of the quantum universal enveloping algebra (QUEA) $\mathrm{U}_{q}(L)$ of a classical Lie algebra $L$ [4-6]. Some results and notions, which will be used in this letter, are briefly reviewed as follows.

Let $\left\{e_{a}\right\}$ be the basis for a certain Borel subalgebra of $\mathrm{U}_{q}(L)$ and $\left\{e^{a}\right\}$ be its dual, then for a given representation $\rho$ of $\mathrm{U}_{q}(L)$, the Hopf algebraic structure of $\mathrm{U}_{q}(L)$ ensures

$$
R=\rho \otimes \rho(\mathscr{R})=\rho \otimes \rho\left(\sum_{a} e_{a} \otimes e^{a}\right)=\sum_{a} \rho\left(e_{a}\right) \otimes \rho\left(e^{a}\right)
$$

to satisfy the Yang-Baxter equation without spectral parameter

$$
\begin{equation*}
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} \tag{1}
\end{equation*}
$$

where $\mathscr{R}=\Sigma_{a} e_{a} \otimes e^{a}$ is called universal $R$-matrix and

$$
\begin{aligned}
& R_{12}=\sum_{a} \rho\left(e_{a}\right) \otimes \rho\left(e^{a}\right) \otimes I \\
& R_{13}=\sum_{a} \rho\left(e_{a}\right) \otimes I \otimes \rho\left(e^{a}\right) \\
& R_{23}=\sum_{a} I \otimes \rho\left(e_{a}\right) \otimes \rho\left(e^{a}\right) .
\end{aligned}
$$

If $\rho$ is chosen to be irreducible, $R$ is called a standard $R$-matrix, which can be expressed by $q-C$ - $G$ coefficients [7]. In the family of $R$-matrices, besides the standard $R$-matrices there are non-standard ones associated with Lie algebras $A_{n}, B_{n}, C_{n}, D_{n}$. They are systematically constructed by extending Kauffman's diagram technique [8], and its possible relations to quEA or quantum group have been analysed [9].

In this letter, we will briefly report the construction of a new class of $R$-matrices essentially different from the above mentioned two classes of $R$-matrices. Further results based on this letter will be published later.

On the $q$-Fock space [10-12] $\mathscr{F}_{q}$

$$
\left.\left\{F(n)=a^{+n}|0\rangle|N| 0\right\rangle=a|0\rangle=0 \quad n \in \mathbb{Z}^{+}=\{0,1,2, \ldots\}\right\}
$$

where boson operators $a^{+}, a=a^{-}$and $N$ satisfy the $q$-deformed boson commutation relations

$$
\begin{equation*}
a a^{+}-q^{-i} a^{+} a=q^{N} \quad\left[N, a^{ \pm}\right]= \pm a^{ \pm} \quad\left[a^{ \pm}, a^{ \pm}\right]=0 \tag{2}
\end{equation*}
$$

the operators

$$
\begin{equation*}
J_{+}=\frac{1}{[2]_{q}} a^{+2} \quad J_{-}=-\frac{1}{[2]_{q}} a^{2} \quad J_{3}=N+\frac{1}{2} \tag{3}
\end{equation*}
$$

satisfy

$$
\begin{equation*}
\left[J_{+}, J_{-}\right]=\left[J_{3}\right]_{q^{2}} \quad\left[J_{3}, J_{ \pm}\right]= \pm 2 J_{ \pm} \tag{4}
\end{equation*}
$$

where $[f]_{t}=\left(t^{f}-t^{-f}\right) /\left(t-t^{-1}\right)$. Thus, (3) gives a new realization of the Quea $\mathrm{sl}_{q}(2)$, which is inhomogenerous and an embedding into the $q$-deformed boson realization of $\left(C_{n}\right)_{q}$ [13].

A natural representation $\Gamma$ are defined on $\mathscr{F}_{q}$ as
$J_{ \pm} F(n)= \pm[2]^{-1}([n][n-1])^{\frac{1}{2}(\nmid \mp \mid)} F(n \pm 2) \quad J_{3} F(n)=\left(n+\frac{1}{2}\right) F(n)$.
It is easy to observe that $\mathscr{F}_{q}$ and $\Gamma$ can be reduced as

$$
\begin{aligned}
& \Gamma=\Gamma^{+} \oplus \Gamma^{-} \quad \mathscr{F}_{q}=\mathscr{F}_{q}^{+} \oplus \mathscr{F}_{q}^{-} \\
& \mathscr{F}_{q}^{ \pm}=\left\{\left.f^{ \pm}(m)=F\left(2 m+\frac{1}{2}(|\mp|)\right) \right\rvert\, m \in \mathbb{Z}^{+}\right\}
\end{aligned}
$$

where $\Gamma^{+}$and $\Gamma^{-}$are representations on invariant subspaces $\mathscr{F}_{q}^{+}$and $\mathscr{F}_{q}^{-}$respectively. From (5) we can write down the explicit forms of $\Gamma^{+}$and $\Gamma^{-}$

$$
\begin{align*}
& J_{+} f^{ \pm}(m)=[2]^{-1} f^{ \pm}(m+1) \\
& J_{-} f^{ \pm}(m)=-[2]^{-1}\left[2 m+\frac{1}{2}(|\mp|)\right]\left[2 m+\frac{1}{2}(|\mp|)-1\right] f^{ \pm}(m-1)  \tag{6}\\
& J_{3} f^{ \pm}(m)=\left(2 m+\frac{1}{2}(|\mp|)+\frac{1}{2}\right) f^{ \pm}(m) .
\end{align*}
$$

It can be proved that $\Gamma^{ \pm}$are irreducible when $q$ is generic and indecomposable (reducible but not completely reducible) when $q$ is a root of unity [14]. For the non-generic case we have $q^{p}=1$ where $p$ is an integer larger than or equal to 3 , so $[\alpha p]=0\left(\alpha \in \mathbb{Z}^{+}\right)$, therefore there exist $\Gamma^{ \pm}$-invariant subspaces

$$
V_{\alpha p}^{ \pm}=\left\{f^{ \pm}(m) \left\lvert\, m \geqslant \frac{\alpha p \pm \sigma(\alpha p)}{3}\right.\right\}
$$

determined by the extreme vector $f^{ \pm}\left(\frac{1}{2}(\alpha p \pm \sigma(\alpha p))\right)$ satisfying $J_{-} f^{ \pm}\left(\frac{1}{2}(\alpha p \pm \sigma(\alpha p))\right)=0$ where $\sigma(x)=\frac{1}{2}\left(1-(-1)^{x}\right)$.

Now one can easily see that on the quotient spaces $Q_{\alpha}^{ \pm}(p)=\mathscr{F}_{q}^{I} / V_{\alpha p}^{ \pm}$:

$$
\left\{|j, M\rangle^{ \pm}=\bar{f}^{ \pm}(j+M) \left\lvert\, j=\frac{1}{4}(\alpha p \pm \sigma(\alpha p)-2)\right., M=j, j-3, \ldots, j\right\}
$$

$\Gamma^{ \pm}$induces $\frac{1}{2}(\alpha p \pm \sigma(\alpha p))$-dimensional representations of $\mathrm{sl}_{q}(2)$
$J_{+}|j, M\rangle^{ \pm}=[2]^{-1}|j, M+1\rangle \quad J_{+}|j, j\rangle=0$
$\left.\left.J_{-} \mid j, M\right) \left.^{ \pm}=-[2]^{-1}\left[2(j+M)+\frac{1}{2}(|\mp|)\right]\left[2(j+M)+\frac{1}{2}(|\mp|)-1\right] \right\rvert\, j, M-1\right)^{ \pm}$
$J_{3}|j, M\rangle^{ \pm}=\left(2(j+M)+1 \mp \frac{1}{2}\right)|j, M\rangle^{ \pm}$.
The above representations are completely new and not covered by the standard angular momentum representation with $q^{p}=1$, and their relations to the indecomposable representations induced by the regular representation [13] are still unknown.

The explicit matrices of the representation on $Q_{2}^{+}(3)$ are .
$J_{+}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right] \quad J_{-}=\left[\begin{array}{rrr}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0\end{array}\right] \quad J_{3}=\frac{1}{2}\left[\begin{array}{lll}9 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$.
For $p=5$ and $\alpha=1$, we have the representation
$J_{+}=\left[\begin{array}{ccc}0 & {[2]^{-1}} & 0 \\ 0 & 0 & {[2]^{-1}} \\ 0 & 0 & 0\end{array}\right] \quad J_{-}=\left[\begin{array}{rrr}0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right] \quad J_{3}=\frac{1}{2}\left[\begin{array}{lll}9 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$
on the space $Q_{1}^{+}(5)$.
Through the universai si ${ }_{q}(2) R$-matrix

$$
\begin{equation*}
R=q^{J_{3} \otimes J_{3}} \sum_{n=0}^{\infty} \frac{\left(1-q^{-4}\right)^{n}}{[n] q^{2}!} q^{n(n-1)}\left(q^{J_{3}} J_{+} \otimes q^{-J_{3}} J_{-}\right)^{n} \tag{10}
\end{equation*}
$$

the boson realization $\mathscr{R}_{8} \in E_{n d}\left(\mathscr{F}_{q} \otimes \mathscr{F}_{q}\right)$ of the $R$-matrix is given by

$$
\begin{equation*}
\mathscr{R}_{B}=q^{\left(N+\frac{1}{2}\right) \otimes\left(N+\frac{1}{2}\right)} \sum_{n=0}^{\infty}\left\{\frac{q^{-1}-q}{q+q^{-1}}\right\}^{n} \frac{q^{n(3 n-1)}}{[n]_{q 2}!} a^{+2 n} q^{n N} \otimes a^{2 n} q^{-n N} \tag{11}
\end{equation*}
$$

in terms of the boson realization (3) of $\mathrm{sl}_{q}(2)$.
Then, on certain quotient spaces $Q_{\alpha}^{ \pm}(p) \otimes Q_{a}^{ \pm}(p)$ of $\mathscr{F}_{q} \otimes \mathscr{F}_{q}$ we can obtain four classes of $R$-matrices from four basic representations on $Q_{\alpha}^{+}(p)$ with even $\alpha p, Q_{\alpha}^{+}(p)$ with odd $\alpha p, Q_{\alpha}^{-}(p)$ with even $\alpha p$ and $Q_{\alpha}^{-}(p)$ with odd $\alpha p$. For lack of space in this letter, we only write one of them on $Q_{\alpha}^{+}(p)$ with even $\alpha p$ as follows

$$
\begin{align*}
(R)_{m_{1} m_{2}}^{m_{1}^{1} \frac{1}{2}}= & q^{\left(2\left(m_{1}+j\right)+\frac{1}{2}\right)\left(2\left(m_{2}+j\right)+\frac{1}{2}\right)} \delta_{m_{1}}^{m_{1}^{1}} \delta_{m_{2}}^{m_{2}^{1}}+\sum_{n=1}^{2 j} \frac{\left(q^{-4}-1\right)^{n}}{[2]_{q}^{2 n}[n]_{q 2}!} \\
& \times \underline{q}^{\left(2\left(m_{1}^{1}+j\right)+\frac{1}{2}\right)\left(2\left(m_{2}^{1}+j\right)+\frac{1}{2}\right)+2 \Sigma_{i-1}^{n}\left(m_{2}-m_{2}+2 i\right)} \prod_{i=1}^{n}\left[2\left(m_{2}+j-l+1\right)\right]_{q} \\
& \times\left[2\left(m_{2}+j-l\right)+1\right]_{q} \delta_{m_{1}+n}^{m_{1}^{1}} \delta_{m_{2}-n}^{m_{1}^{1}} \tag{12}
\end{align*}
$$

It is worth pointing out that only when $q^{p}=1$ will the $R$-matrix given by (12) satisfy YBE, so we call it non-generic $R$-matrix. In the case of representation (8), (12) gives
a completely new $R$-matrix
$R=q^{5 / 4} .\left[\begin{array}{ccccccccc}q & & & & & & & & \\ & q & 0 & & & & & & \\ & 0 & q & & & & & & \\ & & & q & q^{-1}-q & 0 & & & \\ & & & 0 & q^{-1} & 0 & & & \\ & & & 0 & 0 & q & & & \\ & & & & & & 1 & q^{-1}-q & \\ & & & & & & 0 & 1 & \\ & & & & & & & & q^{-1}\end{array}\right] \quad$ for $j=1$.
Of course, for some cases (12) also gives reduced $R$-matrices i.e. they can be obtained from standard $R$-matrices by leting $q^{p}=1$. For example, through (12) the representation (9) gives a reduction of the standard $R$-matrix with spin 1.

Finally we point out that this letter is only a brief report of the systematic research on non-generic $R$-matrices for Ybe. The following results are about to be published.
(1) The general structure of $R$-matrix for the indecomposable representation of $\mathrm{U}_{q}\left(A_{n}\right)$
(2) The classification of non-generic $R$-matrices
(3) The Yang-Baxterization of non-generic $R$-matrices

This work is supported in part by National Foundation of Nature Science of China.

## References

[1] Yang C N 1967 Phys. Rev. Lett. 191312
[2] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)
[3] Yang C N and Ge M L 1989 (eds) Braid Group, Knot Theory and Statistical Mechanics (Singapore: World Scientific)
[4] Drinfeld V G 1986 Proc. IMC (Berkeley, CA: University of California Press) p 789
[5] Jimbo M 1985 Lett, Math. Phys. $10 ; 1986$ Lett, Math. Phys. 63 247; 1986 Commun. Math. Phys. 102537
[6] Takhtajan L A and Smirnov F 1990 Lectures on Quantum Group and Integrable Quantum Field Theory ed M L Ge and B H Zhao (Singapore: World Scientific)
[7] Reshetikhin N Yu 1987 LOMI Preprint E-4 and E-11
[8] Kauffman L H 1988 Ann. Math. Stud. 1151
Ge M L, Wang L Y, Xue K and Wu Y S 1989 Int. J. Mod. Phys. A 43351
Ge M L, Wang L Y, Li Y Q and Xue K 1990 J. Phys. A: Math. Gen. 23605
Ge M L, Li Y Q and Xue K 1990 J. Phys. A: Math. Gen. 23619
[9] Ge M L, Sun C P, Wang L Y and Xue K 1990 J. Phys. A: Math. Gen. 23 L645
[10] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
[11] Sun C P and Fu H C 1989 J. Phys. A: Math. Gen. 22 L983
[12] MacfarLane A J 1989 J. Phys. A: Math. Gen. 224551
[13] Sun C P and Ge M L 1990 J. Math. Phys. 31 in press
[14] Sun C P, Lu J F and Ge M L 1990 J. Phys. A: Math. Gen. 23 L1199

